

Fungsi Kepadatan Probabilitas/Probability Density Function-PDF

Slide: Tri Harsono

PENS

PDF

- Definisi Fungsi kepadatan probabilitas atau probability density function (pdf) menyatakan nilai probabilitas dari setiap kejadian X dan dituliskan dengan p(X).
- Karena p(X) menyatakan nilai probabilitas maka $0 \le p(X) \le 1$
- Untuk semua kejadian maka jumlah nilai probabilitasnya adalah satu atau dituliskan dengan: $\sum p(X = x_n) = 1$

PDF

Ciri-ciri fungsi kepadatan probabilitas adalah :

$$X = \{x_1, x_2, x_3, ..., x_n\}$$

menyatakan semua kejadian yang mungkin

$$0 \le p(X) \le 1$$

$$\sum_{n} p(X = x_n) = 1$$

Nilai probabilitas untuk semua kejadian:

PDF

Grafik fungsi kepadatan probabilitas adalah grafik yang menyatakan nilai kemungkinan dari setiap kejadian. Absis menyatakan kejadian yang mungkin, ordinat menyatakan nilai p(x_i) kemungkinan

Grafik distribusi probabilitas

Kejadian Kontinu vs Diskrit

- Fungsi-fungsi di dalam statistik berdasarkan sifat kejadiannya dibedakan menjadi dua macam yaitu kontinu dan diskrit.
 - □ Kontinu:
 - kejadian yang mungkin;
 - jumlahnya tak berhingga;
 - operasionalnya dilakukan dalam bentuk kalkulus;
 - misal: menghitung jumlah peluang semua kejadian dituliskan dengan :

$$\int_{\forall x} f(x) dx = 1$$

□ Diskrit:

- kejadian yang mungkin;
- jumlahnya berhingga;
- dapat dilakukan secara berkala;
- operasionalnya menggunakan operasional fungsi diskrit,
- Misal: menghitung jumlah peluang semua kejadian dituliskan dengan :

$$\sum_{n} p(X = x_n) = 1$$

Contoh 1 :

- □ X adalah suatu kejadian seseorang akan berangkat ke kantor:
 - kemungkinan dia berangkat naik mobil adalah 0.1,
 - kemungkinan naik kendaraan umum 0.3,
 - kemungkinan naik sepeda motor 0.5, dan
 - kemungkinan tidak berangkat 0.1

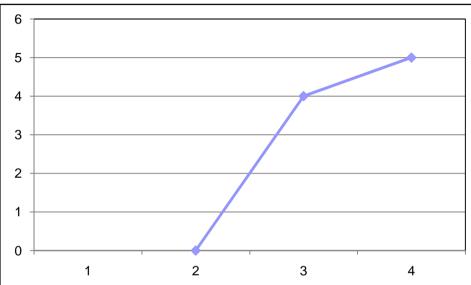
Fungsi kepadatan probabilitas dinyatakan dengan:

$$p(x_1) = 0.1$$
 $p(x_2) = 0.3$ $p(x_3) = 0.5$ $p(x_4) = 0.1$

dimana

$$X = \{x_1, x_2, x_3, x_4\}$$

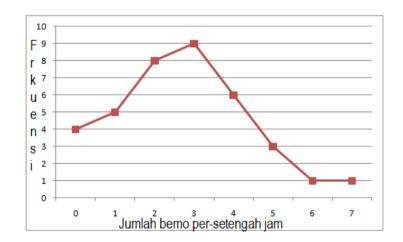


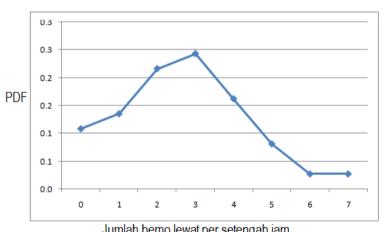

menyatakan kejadian-kejadian yang mungkin

Nilai probabilitas dari semua kemungkinan adalah 0.1 + 0.3 + 0.5 + 0.1 = 1

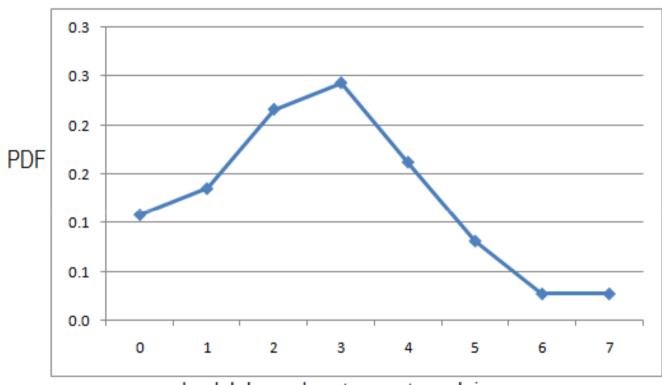
Grafik Fungsi Kepadatan Probabilitas Contoh 1

{Grafik fungsi PDF}




Contoh 2 :

- Dari hasil pencatatan jumlah mobil bemo yang lewat setiap setengah jam di depan kampus PENS diperoleh:
 - tidak ada yang lewat: 4 kali;
 - 1 bemo lewat: 5 kali;
 - 2 bemo lewat: 8 kali;
 - 3 bemo lewat: 9 kali;
 - 4 bemo lewat: 6 kali;
 - 5 bemo lewat: 3 kali;
 - 6 bemo lewat: 1 kali;
 - 7 bemo lewat: 1 kali.
 - Absis (X) menyatakan jumlah bemo lewat dalam setengah jam, ordinat (Y) menyatakan kemunculan atau frekwensi kejadian dibagi dengan jumlah seluruh kejadian (37).



Distribusi jumlah bemo yang lewat per-setengah jam, Contoh 2

Jumlah bemo lewat per setengah jam

PDF, Contoh 2

Distribusi Frekuensi

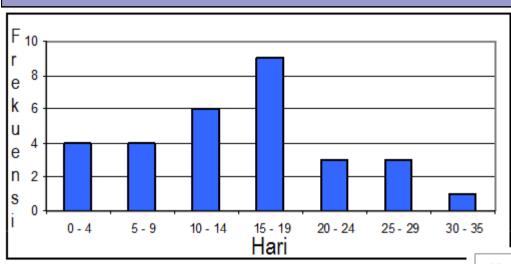
- Distribusi frekwensi adalah suatu model perhitungan histogram dengan menggunakan pengelompokan data.
- Satu kelompok dapat dinyatakan sebagai satu range nilai dengan nilai tengah dianggap sebagai nilai yang mewakili kelompok tersebut.
- Kemunculan suatu kelompok dinamakan dengan frekwensi.

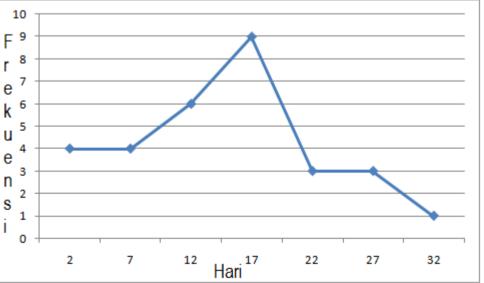
Contoh 3:

Data penjualan telor kampung setiap harinya pada toko MAJU MAKMUR dicatat selama 30 hari adalah sebagai berikut:

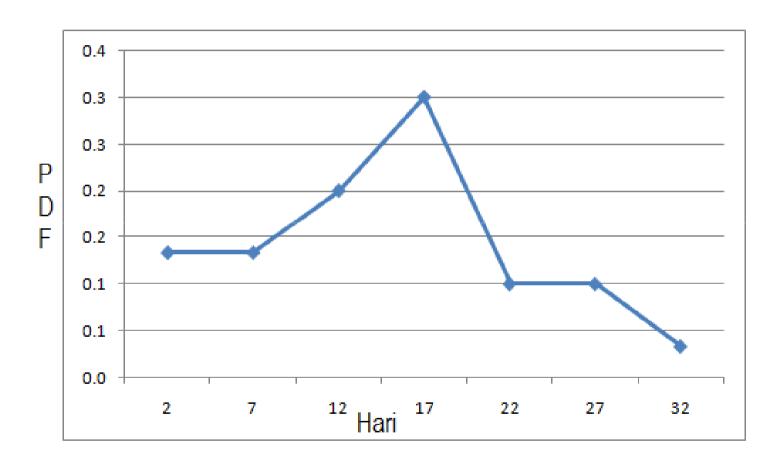
30	25	18	15	21	12	0	15	6	12
0	10	15	24	6	18	27	12	0	15
12	15	20	3	9	25	12	15	6	15

Distribusi frekuensi Contoh 3




Distribusi frekwensi dengan range 5 adalah sebagai berikut:

Range	Median	Frekwensi	
0 - 4	2	4	
5 - 9	7	4	
10 - 14	12	6	
15 - 19	17	9	
20 - 24	22	3	
25 - 29	27	3	
30 - 35	32	1	



PDF Contoh 3

Fungsi Kepadatan Kumulatif

- Fungsi Kepadatan Kumulatif atau Cumulative Density Function (CDF) adalah fungsi yang menjumlahkan nilai kemungkinan sampai suatu kejadian tertentu.
- Dapat ditulis:

$$p(X \le x_i)$$

■ Bila $X=(x_1, x_2, x_3, ..., x_n)$, maka fungsi kepadatan kumulatif untuk $X = x_k$ dapat ditulis :

$$p(X \le x_k) = p(x_1) + p(x_2) + \dots + p(x_k)$$

atau

$$p(x \le x_k) = \sum_{i=1}^k p(x_i)$$

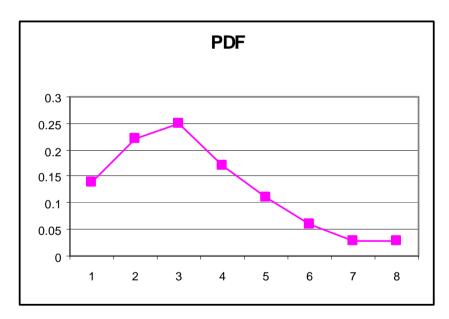
Contoh 4:

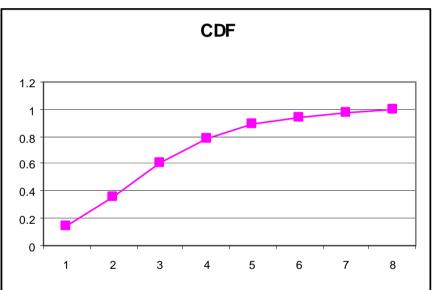
Diketahui frekwensi Jumlah pelanggan yang melalui pintu kasir untuk setiap 5 menit sebuah supermarket adalah sebagai berikut :

Jumlah Pelanggan	Frekwensi
0	5
1	8
2	9
3	6
4	4
5	2
6	1
7	1

Perhitungan PDF dan CDF adalah sebagai berikut :

Jml Pelanggan	Frekuensi	PDF	CDF
0	5	0,14	0,14
1	8	0,22	0,36
2	9	0,25	0,61
3	6	0,17	0,78
4	4	0,11	0,89
5	2	0,06	0,94
6	1	0,03	0,97
7	1	0,03	1,00
Total	36	1	





Jumlah Pig	Frekwen si		PDF	=	CDF
0	5	5/36	=	0.14	0.14
1	8	8/36	=	0.22	0.14+0.22 = 0.36
2	9	9/36	=	0.25	0.36+0.25 = 0.61
3	6	6/36	=	0.17	0.61+0.17 = 0.78
4	4	4/36	=	0.11	0.78+0.11 = 0.89
5	2	2/36	=	0.06	0.89 + 0.06 = 0.94
6	1	1/36	=	0.03	0.94+0.03 = 0.97
7	1	1/36	=	0.03	0.97+0.03 = 1.00

Grafik PDF dan CDF Contoh 4

Contoh 5:

Pengamatan terhadap nilai matematika mahasiswa Jurusan TK. Nilai matematika 2 dari 30 mahasiswa Jurusan TK (kelas 2 TK) adalah sebagai berikut:

No. Mhs	Nilai
1	В
2	С
3	С
4	В
5	А
6	С
7	В
8	С
9	D
10	В

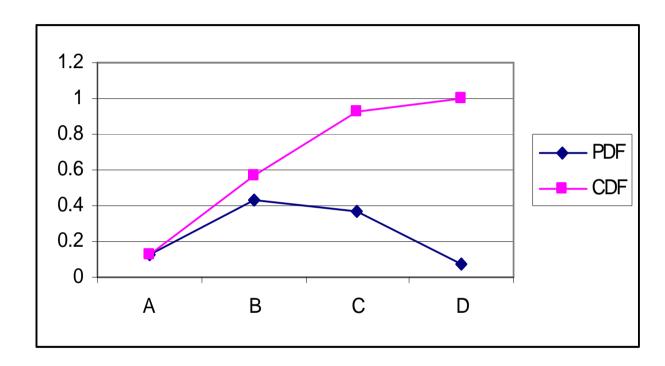
No. Mhs	Nilai
11	С
12	С
13	Α
14	В
15	С
16	В
17	В
18	С
19	В
20	В

No. Mhs	Nilai
21	С
22	В
23	Α
24	D
25	С
26	В
27	В
28	В
29	Α
30	С

Nyatakan Histogram, PDF, dan CDF dari data nilai mahasiswa di atas.

Diagram distribusi frekuensi dari data matematika tersebut adalah :

Nilai	Jumlah Mhs Yang Mendapat Nilai
А	4
В	13
С	11
D	2



Histogram, PDF, dan CDF diperoleh sebagai berikut :

Nilai	Histogram	PDF	CDF
А	4	0.13	0.13
В	13	0.43	0.57
С	11	0.37	0.93
D	2	0.07	1.00

Grafik PDF dan CDF Contoh 5

Tugas 2

- 1. Anda lakukan survey terhadap 20 orang teman anda yang dipilih secara acak. Tanyakan jenis acara TV yang PALING DISUKAI oleh mereka dari acara-acara TV berikut ini: Olahraga, Infotainment (berita Selebriti, dll), Berita politik dan/atau ekonomi, Film Action, Film Kartun, Film Drama, Sinetron.
 - Buatlah Distribusi frekuensi, PDF, dan CDF dari hasil survey tersebut
 - Gambar grafik PDF dan CDF nya
 - Didasarkan pada segmen mahasiswa yang anda pilih (jenis kelamin), buatlah analisa, berapa % mahasiswa laki2 pada masing-masing acara TV yang PALING DISUKAI tsb, demikian juga untuk mahasiswa perempuan.

Tugas 2 (cont. ...)

- 2. Ambillah data dari salah satu informasi yang ada di internet, misal dari youtube atau dari suatu website lainnya.
 - □ Buatlah distribusi frekuensi dari data tersebut;
 - Nyatakan PDF dan CDF nya.
 - □ Gambarkan grafik PDF dan CDF nya